_images/tws_logo.png

Documentation

The structure of the Earth’s crust and upper mantle gives useful information on the internal composition and dynamics of our planet. Some of the most widely used techniques to infer these properties are based on examining the effect of teleseismic body wave (i.e., P and S waves that originate from distant earthquakes and arrive as plane waves) propagation (e.g., transmission and scattering) through stratified media. Modeling the seismic response from stacks of subsurface layers is therefore an essential tool in characterizing their effect on observed seismograms.

This package contains python and fortran modules to synthesize teleseismic body-wave propagation through stacks of generally anisotropic and strictly horizontal layers using the matrix propagator approach of Kennett (1983), as implemented in Thomson (1997). The software also properly models reverberations from an overlying column of water using the R/T matrix expressions of Bostock and Trehu (2012), effectively simulating ocean-bottom seismic (OBS) station recordings. The software will be useful in a variety of teleseismic receiver-based studies, such as P or S receiver functions, long-period P-wave polarization, shear-wave splitting from core-refracted shear waves (i.e., SKS, SKKS), etc. It may also be the starting point for stochastic inverse methods (e.g., Monte Carlo sampling). The main part of the code is written in fortran with python wrappers. Common computational workflows are covered in the Jupyter notebooks bundled with this package.

Getting Started